
Top Vulns & Where to Start



The big picture



The big picture



Injection vulnerabilities
● There’s a common theme in many 

vulnerabilities you’ve probably heard in the 
news

● User input escaping its context



Injection vulnerabilities
● Let’s take a look at a simple example, no 

computers involved.
● Today we’ll learn how to do a burger injection 

vulnerability (BIV). Next meeting we’ll see 
BIVs are identical to real vulnerabilities such 
as BOF, SQLi, XSS, RCE, LFI, SSRF, CSRF, 
etc.



Burger injection
● Let’s order a hamburger from our favorite 

restaurant online.



Burger injection: Receipt



Burger injection
● One day I decided to get a smoked burger 

instead, and forgot to change my order 
comment about having onions on my country 
burger



Burger injection: Receipt



Burger injection
● Result: we got two burgers, what just 

happened?



Burger injection: Receipt

Where does our
order stop and the 
comments begin?

There’s no line on our 
receipt that separates 
order comments!



Burger injection
● Takeaway: We got a free burger using our 

burger injection vulnerability (BIV)
● How do we protect ourselves against these 

vulnerabilities?

● A line to separate order comments (user 
input) from the rest of the order



Injection vulnerabilities
● Computers need that same line to delineate 

user data and what the instructions are.



When you visit a website how does the server know who 
you are?

A few ways are possible…
● Credentials (username / password)
● HTTP Cookies
● IP Address

Authentication & Session Management



HTTP is a stateless protocol!

● Cookies store information that a server wants web 
clients to send back in following requests

● HTTP Cookies are a way to facilitate Session 
Management

● Insecure implementations of Session Management is 
one way vulnerabilities can occur in computer programs

What are HTTP Cookies?



● Predictable, non-hashed, values
● Reused values
● Very long (or non specified) expiration date
● A wider set of applicable domains than necessary
● Data that should be stored server-side

What are insecure HTTP Cookies?



'ASP.NET_SessionId=10x0kp5snfafxpua4vky0q0r; 
domain=.exampledomain.com; path=/; HttpOnly'

'PHPSESSID=44opurqc0btvdnajfj6qogsqr7; expires=Tue, 
18-Sep-2018 01:02:50 GMT; Max-Age=604800; path=/'

‘AuthToken=123456;Username=admin;RoleId=1;loggedIn=
True;’

Examples of Session Cookies



When you visit a website how does the server know 
which resources you are allowed to access?

It is generally a good practice to establish roles for your 
users. Roles determine which resources a given user 
should be allowed to access.

Servers must be diligent to enforce access by role!

Authentication & Session Management



When you visit a website how does the server know 
which resources you are allowed to access?

Servers should not store user identifiers and/or user 
access permissions in the browser!

This can be done server-side after establishing a session

Authentication & Session Management



● Check which values are being stored in 
HTTP cookies
○ Is the Session Management scheme 

homebrewed?

How to validate Authentication & 
Session Management?



● Ctrl + Shift + I
● F12 -> Networking

View HTTP Cookies in your browser



Which HTTP Cookie values may be 
vulnerable?

'ASP.NET_SessionId=1kp5snfafxpua4vkyfjozfezpppaxq0r; 
userId=1508447;AjaxSessionKey=Z4PhX7uL31m2Y5fUv;M
DID=H4sIAAAAAAAEAGNkYGBgBGI2IGYCsfWBBINg'

Find the vulnerability!



Which HTTP Cookie values may be 
vulnerable?

‘AuthToken=123456;Username=admin;RoleId=1;loggedIn=
True;’
(they all are!!)

Find the vulnerability!



● Attempt to access sections of a site that 
should be limited to users with escalated 
privileges
○ Especially sections that should require you to be 

logged in!

How to validate Authentication & 
Session Management?



● Test for default credentials
● Check for weak password policies (including 

reset policies)

How to validate Authentication & 
Session Management?



● Try changing form input values beyond what 
the browser displays

● Check for anti Cross Site Request Forgery 
(CSRF) mechanisms

○ Unique AntiForgeryTokens within input forms

How to validate Authentication & 
Session Management?


